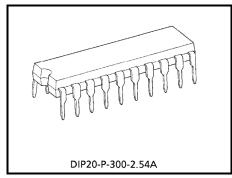
TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

# TD62C851PG,TD62C852PG

### 8BIT SERIAL-IN PARALLEL-OUT SHIFT REGISTER / LATCH DRIVERS

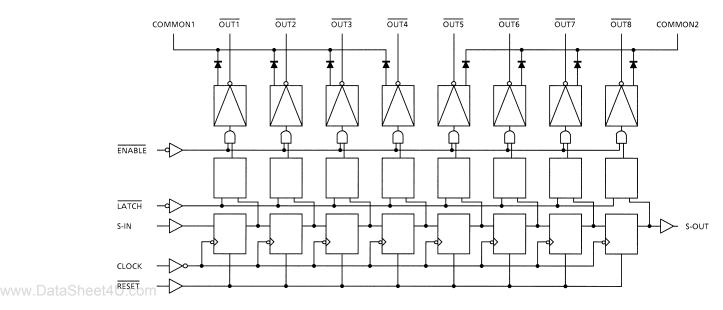

The TD62C851PG and TD62C852PG are monolithic circuits designed to be used together with Bi–CMOS integrated circuits. The devices consist of a 8bit shift register, 8bit latches, and 8 output circuits (integral clamp diodes for switching inductive loads).

The suffix (G) appended to the part number represents a Lead (Pb)-Free product.

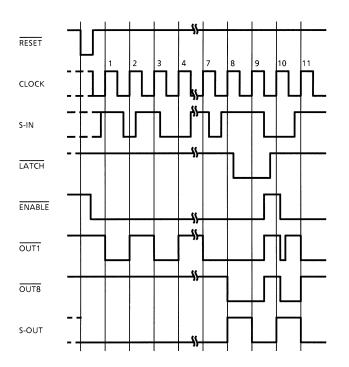
### **FEATURES**

- 8bit serial-in parallel-out shift register / latch driver www.DataSheet4U(Bi-CMOS process)
  - Output sustaining voltage ; 50 V
  - Output current ; TD62C851PG 200 mA / ch (Low saturation type) TD62C852PG 500 mA / ch (darlington type)
  - Built-in output clamp diodes
  - CMOS compatible inputs
  - Package; DIP20-P-300A

### **PIN CONNECTION (TOP VIEW)**

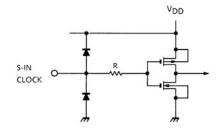



Weight: 2.25 g (typ.)

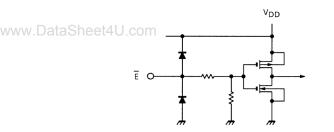

| gnd [            |    | 20 | ] v <sub>cc</sub> |
|------------------|----|----|-------------------|
| Ē                | 2  | 19 | ĪŔ                |
| LATCH            | 3  | 18 | ] сік             |
| s-out [          | 4  | 17 | ] s-in            |
| P <sub>G</sub> [ | 5  | 16 | □ <sub>PG</sub>   |
| сом2 [           | 6  | 15 | сом1              |
| 05 [             | 7  | 14 | 04                |
| <u> </u>         | 8  | 13 | 03                |
| 07 [             | 9  | 12 | 02                |
| 08               | 10 | 11 | 01                |
|                  |    |    |                   |

## **TOSHIBA**

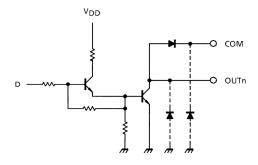
### **BLOCK DIAGRAM**



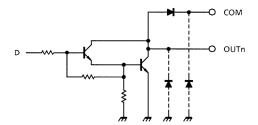



### EQUIVALENT OF INPUTS AND OUTPUTS

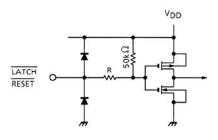

### S-IN, clock terminal equivalent circuits




### **ENABLE** terminal equivalent circuits



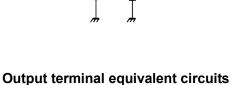
## Output terminal equivalent circuits (TD62C851PG)




## (TD62C852PG)



Note: The output parasitic diode cannot be used as clamp diode.


### LATCH, RESET terminal equivalent circuits



### S-OUT terminal equivalent circuits

VDD

D



O S-OUT

### **TRUTH TABLE**

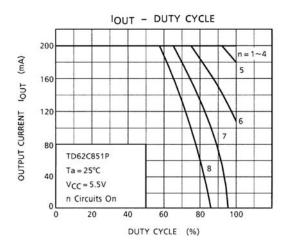
| СК                                                   | Ē    | R   | LATCH | S-IN | 0   | JT     | S-OUT          |  |
|------------------------------------------------------|------|-----|-------|------|-----|--------|----------------|--|
| CR                                                   | CK E |     | LATCH | 3-11 | 01  | On     | 3-001          |  |
|                                                      | L    | Н   | н     | L    | OFF | On - 1 | Q <sub>7</sub> |  |
|                                                      | L    | н   | н     | Н    | ON  | On - 1 | Q <sub>7</sub> |  |
|                                                      | L    | Н   | L     | (*)  | NC  | NC     | Q <sub>7</sub> |  |
|                                                      | Н    | Н   | (*)   | (*)  | OFF | NC     | Q <sub>7</sub> |  |
|                                                      | (*)  | (*) | (*)   | (*)  | NC  | NC     | Q7             |  |
| (*)                                                  | (*)  | L   | н     | (*)  | OFF | OFF    | L              |  |
| (*)                                                  | Н    | Ъ   | L     | (*)  | NC  | NC     | L              |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$ |      |     |       |      |     |        |                |  |

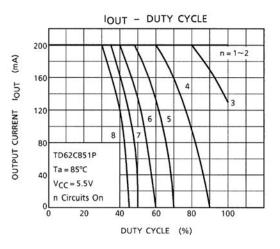
www.DataSheet4U.com

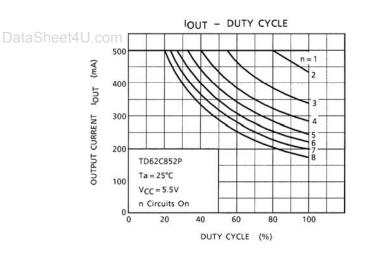
### ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

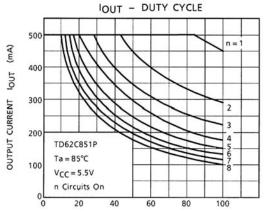
| CHARAC            | CTERISTIC  | SYMBOL                | RATING                        | UNIT       |
|-------------------|------------|-----------------------|-------------------------------|------------|
| Supply Voltage    |            | V <sub>DD</sub>       | -0.3~7.0                      | V          |
| Output Sustaining | Voltage    | V <sub>CE (SUS)</sub> | / <sub>CE (SUS)</sub> −0.5~50 |            |
| Output Current    | TD62C851PG | lour                  | 200                           | mA / ch    |
|                   | TD62C852PG | IOUT                  | 500                           | IIIA / CII |
| Input Voltage     |            | V <sub>IN</sub>       | ~0.4~V <sub>DD</sub> + 0.3    | V          |
| Power Dissipation |            | PD                    | 1.47                          | W          |
| Operating Temper  | ature      | T <sub>opr</sub>      | -40~85                        | °C         |
| Storage Temperat  | ure        | T <sub>stg</sub>      | -55~150                       | °C         |

### **RECOMMENDED OPERATING CONDITIONS (Ta = -40~85°C)**

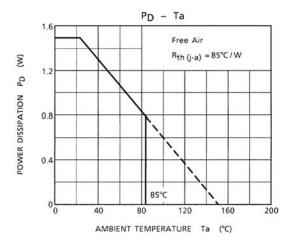

|             | CHARACTERISTIC                   |                                |                | SYMBOL             | CO                                       | NDITION                                 | MIN        | TYP. | MAX             | UNIT       |  |
|-------------|----------------------------------|--------------------------------|----------------|--------------------|------------------------------------------|-----------------------------------------|------------|------|-----------------|------------|--|
|             | Supply Voltage                   |                                |                | V <sub>DD</sub>    |                                          | _                                       | 4.5        | 5.0  | 5.5             | V          |  |
|             | Input Voltage                    |                                |                | V <sub>IN</sub>    |                                          | _                                       | 0          |      | V <sub>DD</sub> | V          |  |
|             | Output Currer                    | nt ("H" Level)                 | S-OUT          | I <sub>OH</sub>    | Ta = 25°C                                |                                         | _          |      | -0.4            | mA         |  |
|             | Output Voltag                    | je ("L" Level)                 | On             | V <sub>OH</sub>    |                                          | _                                       | 0          |      | 50              | V          |  |
|             |                                  |                                | S-OUT          |                    |                                          | _                                       | _          | _    | 0.4             |            |  |
|             |                                  |                                |                |                    | DC 1 circuit, Ta                         | = 25°C                                  | 0          | _    | 160             |            |  |
| DeteOheet44 | Output<br>Current<br>("L" Level) | TD62C<br>851PG                 |                | IOL                |                                          | 8 circuit on<br>T <sub>pw</sub> = 25 ms | Duty = 10% | 0    |                 | 160        |  |
|             |                                  |                                | - On           |                    | Ta = 85°C<br>V <sub>DD</sub> = 5.5 V     | Duty = 40%                              | 0          |      | 95              | mA /<br>ch |  |
|             |                                  | TD62C<br>852PG                 |                |                    | D C 1 circuit, Ta = 25°C                 |                                         | 0          | _    | 400             |            |  |
|             |                                  |                                |                |                    | 8 circuit on<br>$T_{pw} = 25 \text{ ms}$ | Duty = 10%                              | 0          | _    | 400             |            |  |
|             |                                  | 0021 0                         |                |                    | Ta = 85°C<br>V <sub>DD</sub> = 5.5 V     | Duty = 50%                              | 0          | _    | 170             |            |  |
| DataSheet4L | Clock Frequency                  |                                |                | <sup>f</sup> CLOCK | _                                        |                                         | 1.5        | -    | -               | MHz        |  |
|             | Clock Pulse Width                |                                |                | fw CLOCK           | -                                        |                                         | 0.33       | _    | _               | μs         |  |
|             | Data Set Up Time                 |                                |                | t <sub>setup</sub> | —                                        |                                         | 100        | -    | -               | ns         |  |
|             | Data Hold Time                   |                                |                | t <sub>hold</sub>  | _                                        |                                         | 100        | _    | -               | ns         |  |
|             | Clamp Diode Reverse Voltage      |                                |                | VR                 | _                                        |                                         | 0          | _    | 50              | V          |  |
|             |                                  | Clamp Diode Forward TD62C851PG |                |                    | _                                        |                                         | 0          | _    | 160             | <b>m</b> ( |  |
|             | Current TD62C852PG               |                                | ١ <sub>F</sub> | _                  |                                          | 0                                       | _          | 400  | mA              |            |  |


### ELECTRICAL CHARACTERISTICS (Ta = -40~85°C)

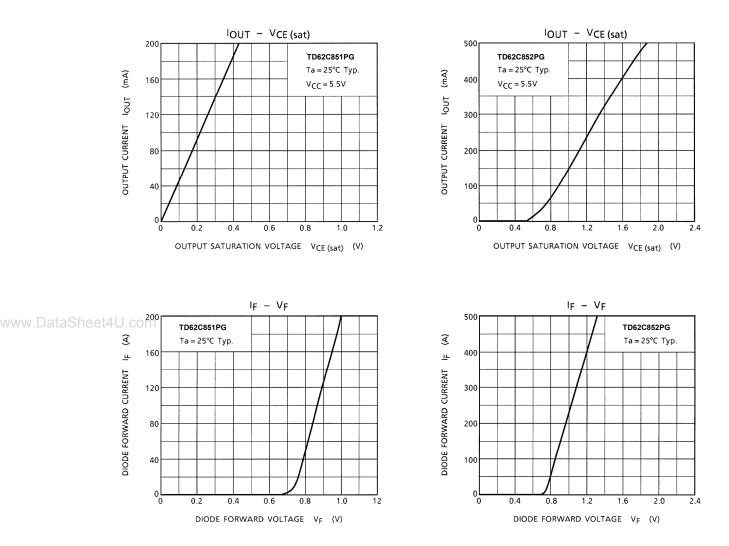

| CHARACTERISTIC                                       |                          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SYMBOL           | TEST<br>CIR-<br>CUIT                                                                                                        | TEST C                                                               | ONDITION                                               | MIN                                                    | TYP.                                                                                                                                                                                                                                                                                                                                                                             | MAX                                                     | UNIT                                                    |
|------------------------------------------------------|--------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Input Voltage "L" Level                              |                          | V <sub>IH</sub> | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | —                |                                                                                                                             | 0.7<br>V <sub>DD</sub>                                               | I                                                      | I                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                                         |
|                                                      |                          | "L              | " Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>IL</sub>  | _                                                                                                                           | _                                                                    |                                                        | _                                                      | -                                                                                                                                                                                                                                                                                                                                                                                | 0.3<br>V <sub>DD</sub>                                  | V                                                       |
|                                                      |                          | "H              | " Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ι <sub>ΙΗ</sub>  | _                                                                                                                           | ENABLE, V <sub>DD</sub> = 5.5 V<br>V <sub>IH</sub> = V <sub>DD</sub> |                                                        | 28                                                     | 55                                                                                                                                                                                                                                                                                                                                                                               | 110                                                     |                                                         |
| Input Current "L" Lev                                |                          | " Level         | IIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | LATCH, RESET<br>V <sub>DD</sub> = 5.5 V, V <sub>IL</sub> = GND                                                              |                                                                      | -55                                                    | -110                                                   | -275                                                                                                                                                                                                                                                                                                                                                                             | μΑ                                                      |                                                         |
|                                                      |                          |                 | IIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | CLOCK, S-IN<br>V <sub>IN</sub> = V <sub>CC</sub> or GND                                                                     |                                                                      | _                                                      | I                                                      | ±1.0                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                         |
| Output<br>Voltage<br>I.com                           | "H" Level                | S               | -OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>OH</sub>  | _                                                                                                                           | V <sub>DD</sub> = 4.5 V<br>I <sub>OH</sub> = −10 µA                  |                                                        | 3.9                                                    | 4.1                                                                                                                                                                                                                                                                                                                                                                              | _                                                       | V                                                       |
|                                                      | "L" Level                | S               | -OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                                                                                                             | V <sub>DD</sub> = 4.5 V                                              | I <sub>OL</sub> = 0.8 mA                               | —                                                      | 0.2                                                                                                                                                                                                                                                                                                                                                                              | 0.4                                                     | V                                                       |
|                                                      |                          | TD6             | TD62C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>OL</sub>  |                                                                                                                             |                                                                      | I <sub>OL</sub> = 100 mA                               | _                                                      | 0.29                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                    |                                                         |
|                                                      |                          | 0.              | 851P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | _                                                                                                                           |                                                                      | I <sub>OL</sub> = 160 mA                               | _                                                      | 0.39                                                                                                                                                                                                                                                                                                                                                                             | 0.65                                                    |                                                         |
|                                                      |                          | TD              | TD62C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                                                                                                             |                                                                      | I <sub>OL</sub> = 250 mA                               | _                                                      | 1.24                                                                                                                                                                                                                                                                                                                                                                             | 1.90                                                    |                                                         |
|                                                      |                          |                 | 852P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                                                                                                             |                                                                      | I <sub>OL</sub> = 400 mA                               | _                                                      | 1.54                                                                                                                                                                                                                                                                                                                                                                             | 2.30                                                    |                                                         |
| Output<br>Current                                    | "H" Level                |                 | Ōn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I <sub>OH</sub>  | _                                                                                                                           | V <sub>DD</sub> = 5.5 V, V                                           | V <sub>OH</sub> = 50.0 V                               | _                                                      | -                                                                                                                                                                                                                                                                                                                                                                                | 100                                                     | μA                                                      |
|                                                      |                          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I <sub>DD1</sub> |                                                                                                                             |                                                                      | ENABLE = "H"                                           | _                                                      | 130                                                                                                                                                                                                                                                                                                                                                                              | 200                                                     |                                                         |
| Operating Supply Current<br>TD62C851PG<br>TD62C852PG |                          |                 | I <sub>DD2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                | $- V_{DD} = 5.5 V$ $Ta = 25^{\circ}C$ $F_{CLK} = 1 MHz$ $Data = 1/2$ $Ta = 1/2$ $ENABLE = "H"$ $CLK = 1 MHz$ $ENABLE = "L"$ | Output open<br>DATA = 1 / 2                                          | _                                                      | 2.0                                                    | 5.0                                                                                                                                                                                                                                                                                                                                                                              | mA                                                      |                                                         |
|                                                      |                          |                 | I <sub>DD3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                |                                                                                                                             | _                                                                    | 35                                                     | 40                                                     |                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                                         |
|                                                      |                          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                             | f <sub>CLK</sub> = 1 MHz<br>ENABLE = "L"                             | _                                                      | 1.0                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                         |
| Clamp Diode Reverse Current                          |                          |                 | I <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                | V <sub>R</sub> = 50 V                                                                                                       |                                                                      | _                                                      | _                                                      | 50                                                                                                                                                                                                                                                                                                                                                                               | μA                                                      |                                                         |
| Clamp Diod                                           | e                        | TD62            | 2C851PG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                                                                                                             | I <sub>F</sub> = 160 mA                                              |                                                        | —                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                              | 2.0                                                     | V                                                       |
|                                                      | an survey of Marthan and |                 | 2C852PG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VF               |                                                                                                                             | I <sub>F</sub> = 400 mA                                              |                                                        | _                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                              | 2.0                                                     | v                                                       |
|                                                      | Input Voltag             | Input Voltage   | Input Voltage Input Voltage Input Current In | Input Voltage    | $\begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$                                                         | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $              | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c } \hline \mbox{CHARACTERISTIC} & \mbox{SYMBOL} & \mbox{Clift} & \mbox{TEST CONDITION} & \mbox{MIN} \\ \hline \mbox{Test CONDITION} & \mbox{MIN} \\ \hline \mbox{Test CONDITION} & \mbox{MIN} \\ \hline \mbox{Input Voltage} & \mbox{Test CONDITION} & \mbox{MIN} \\ \hline \mbox{Test Level} & \mbox{Vil} & - & & - & & - & & & & & & & & & & & $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |


### SWITCHING CHARACTERISTICS (Ta = 25°C)

| СН               | CHARACTERISTIC          |          |                  | TEST<br>CIR-<br>CUIT | TEST CONDITION                                                                                                                                                                                            | MIN | TYP. | MAX  | UNIT |
|------------------|-------------------------|----------|------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|
|                  |                         | CK-S-OUT |                  |                      |                                                                                                                                                                                                           | _   | 0.40 | 0.65 |      |
|                  |                         | CK- On   | t <sub>pLH</sub> |                      |                                                                                                                                                                                                           |     | 1.80 | 3.00 |      |
|                  | Low-to<br>-High         | L- On    |                  | —                    |                                                                                                                                                                                                           |     | 2.10 | 3.50 |      |
|                  | Ū                       | R- On    |                  |                      |                                                                                                                                                                                                           | _   | 1.50 | 2.50 |      |
| Propagation      |                         | E- On    |                  |                      |                                                                                                                                                                                                           | _   | 1.50 | 2.50 |      |
| Delay Time       |                         | CK-S-OUT |                  |                      | $V_{DD} = 5.0 \text{ V}, V_{IH} = 5.0 \text{ V}$ $V_{IL} = 0 \text{ V}, \text{ Duty} = 50\%$ $R_{L} = \begin{pmatrix} 300 \ \Omega \ (\text{TD62C851}) \\ 120 \ \Omega \ (\text{TD62C852}) \end{pmatrix}$ | _   | 0.33 | 0.55 | μs   |
|                  | High-to<br>-Low         | CK- On   | t <sub>рНL</sub> | _                    |                                                                                                                                                                                                           | _   | 0.41 | 0.70 |      |
|                  |                         | L- On    |                  |                      |                                                                                                                                                                                                           | _   | 0.30 | 0.50 |      |
|                  |                         | R-S-OUT  |                  |                      |                                                                                                                                                                                                           | _   | 0.25 | 0.42 |      |
|                  |                         | E- On    |                  |                      |                                                                                                                                                                                                           | _   | 0.21 | 0.35 |      |
| Maximum Clo      | ck Frequency            | ,        | f <sub>MAX</sub> | _                    |                                                                                                                                                                                                           | 1.5 | 2.0  | _    | MHz  |
|                  |                         | CLOCK    | t <sub>wCK</sub> |                      |                                                                                                                                                                                                           | —   | 250  | 330  |      |
| 4 U Minimum Puls | e Width                 | LATCH    | t <sub>wL</sub>  |                      |                                                                                                                                                                                                           | I   | 116  | 160  | ns   |
|                  | RESET                   |          | t <sub>wR</sub>  | 1                    |                                                                                                                                                                                                           |     | 107  | 140  |      |
| Data Set Up 1    | Data Set Up Time        |          |                  |                      |                                                                                                                                                                                                           | —   | 30   | 60   | ns   |
| Data Hold Tim    | Data Hold Time          |          |                  |                      |                                                                                                                                                                                                           | _   | 14   | 40   | 115  |
| Maximum Clo      | Maximum Clock Rise Time |          |                  |                      |                                                                                                                                                                                                           | —   | 70   | —    | ns   |
| Maximum Clo      | Maximum Clock Fall Time |          |                  | ] —                  |                                                                                                                                                                                                           | _   | 70   | _    | 115  |







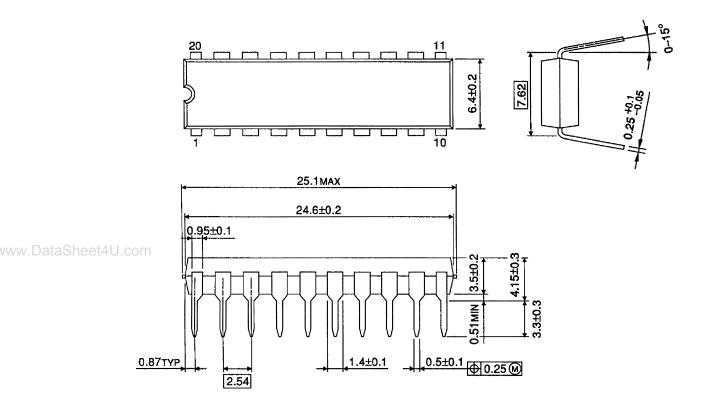

DUTY CYCLE (%)



## TOSHIBA



### PRECAUTIONS FOR USING


This IC does not integrate protection circuits such as overcurrent and overvoltage protectors. Thus, if excess current or voltage is applied to the IC, the IC may be damaged. Please design the IC so that excess current or voltage will not be applied to the IC.

Utmost care is necessary in the design of the output line, V<sub>CC</sub> and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

### PACKAGE DIMENSIONS

DIP20-P-300-2.54A

Unit: mm



Weight: 2.25 g (Typ.)

### **Notes on Contents**

#### 1. Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

### 2. Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

### 3. Timing Charts

Timing charts may be simplified for explanatory purposes.

### IC Usage Considerations

### Notes on Handling of ICs

(1) The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.

v.DataSheet4U.com Excee

Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.

- (2) Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.
- (3) If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition. Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.
- (4) Do not insert devices in the wrong orientation or incorrectly. Make sure that the positive and negative terminals of power supplies are connected properly. Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion. In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.
- (5) Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator. If there is a large amount of leakage current such as input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.

### Points to Remember on Handling of ICs

#### (1) Heat Radiation Design

In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (Tj) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.

(2) Back-EMF

When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond absolute maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.

www.DataSheet4U.com

|    | About solderability, following conditions were confirmed                                                                                                                                                                |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Solderability                                                                                                                                                                                                           |
|    | <ul> <li>(1) Use of Sn-37Pb solder Bath</li> <li>solder bath temperature = 230°C</li> <li>dipping time = 5 seconds</li> <li>the number of times = once</li> <li>use of R-type flux</li> </ul>                           |
| et | <ul> <li>(2) Use of Sn-3.0Ag-0.5Cu solder Bath <ul> <li>solder bath temperature = 245°C</li> <li>dipping time = 5 seconds</li> <li>the number of times = once</li> </ul> </li> <li>4U.com use of R-type flux</li> </ul> |

### **RESTRICTIONS ON PRODUCT USE**

060116EBA

- The information contained herein is subject to change without notice. 021023\_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
   In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023 A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023\_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106\_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023\_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023\_E